# Part - 2 Lecture - 5 Chapter 1 Relations and Functions

Hard work beats talent when talent doesn’t work hard. – **Tim Notke**

Booklets/Notes/Assignments are typed here on this website and their PDFs will be made available soon.

5. Consider f : N → N, g: N → N and h: N → R defined as f (x) = 2x, g(y) = 3y + 4 and h(z) = sin z, ∀ x, y and z in N. Show that ho(gof) = (hog)of. (N)

6. Find gof and fog, if (N)

(i). f(x)=|x| \text{ and }g(x)=|5x-2|

(ii). f(x)=8x^3 \text{ and } g(x)=x^\frac{1}{3}

7. If f : R → R be given by f(x)=(3-x^3)^\frac{1}{3}, then find fof(x). (N)

8. Let g,f: R \rightarrow R be defined by f(x)=2x+1 and g(x)=x^2-2,\forall x\in R , respectively. Then, find gof. (E)

9. Let g,f: R\rightarrow R be defined by g(x)=\frac{x+2}{3},f(x)=3x-2 write fog(x). (B)

10. If f : R → R defined by f(x)=\frac{x-1}{2}, find (fof)(x). (B)

11. If f : R → R defined by f(x)=x^2-3x+2, find (fof)(x). (E)

12. If f(x)=log{\left(\frac{1+x}{1-x}\right)}, show that f\left(\frac{2x}{1+x^2}\right)=2f(x). (B)

13. Let f: R \rightarrow R be defined by f(x)=x^2+1 , find the pre image of 17 and -3. (B)

14. If f: R \rightarrow R, g: R \rightarrow R, given by f(x)=[x],g(x)=|x|, then find fog\left(-\frac{2}{3}\right) \text{ and } gof\left(-\frac{2}{3}\right) . (B)