Limits and Derivatives Lecture 4 Class 11

We become what we think about most of the time, and that’s the strangest secret. – Earl Nightingale

Lecture - 4 Chapter 13 Limits and Derivatives

Finding limits in double definition functions

NCERT EXERCISE 13.1

Question 23. Find \lim_{x \to 0} f(x) and \lim_{x \to 1} f(x) , where f(x) = \begin{cases} {2x+3}, & x \le 0 \\ 3(x+1), & x>0 \end{cases}

Question 24. Find \lim_{x \to 1} f(x) , where f(x) = \begin{cases} {x^2-1}, & x \le 1 \\ {-x^2-1}, & x>0 \end{cases}

Finding limits in double definition functions

Question 25. Find \lim_{x \to 0} f(x) , where f(x) = \begin{cases} {\frac{|x|}{x}}, & x \ne 0 \\ {0}, & x=0 \end{cases}

Question 26. Find \lim_{x \to 0} f(x) , where f(x) = \begin{cases} {\frac{x}{|x|}}, & x \ne 0 \\ {0}, & x=0 \end{cases}

Question 27. Find \lim_{x \to 5} f(x) , where f(x) = |x|-5

Question 28. Suppose f(x) = \begin{cases} {a+bx}, & x<1 \\ {4}, & x=0  \\ {b-ax}, & x>1 \end{cases} and if \lim_{x \to 1} f(x) = f(1) what are the possible values of a and b?

Question 29. Let a_1, a_2, \dots, a_n be fixed real numbers and define a function f(x) = (x-a_1)(x-a_2) \dots (x-a_n). What is \lim_{x \to a_1} f(x) ? For some a \ne a_1, a_2, \dots,  a_n, compute \lim_{x \to a} f(x).

Question 30. If f(x) = \begin{cases} {|x|+1}, & x<0 \\ {0}, & x=0 \\ {|x|-1}, & x>0 \end{cases} . For what value (s) of a does \lim_{x \to a} f(x) exists?

Question 31. If the function f(x) satisfies \lim_{x \to 1} \frac{f(x)-2}{x^2-1} = \pi , evaluate \lim_{x \to 1} f(x).

Question 32. If f(x) = \begin{cases} {mx^2+n}, & x<0 \\ {nx+m}, & 0 \le x \le 1 \\ {nx^3+m}, & x>1 \end{cases}

Advertisements