L9 Continuity and Differentiability

सफर में मुश्किलें आऐ, तो हिम्मत और बढ़ती है।
कोई अगर रास्ता रोके, तो जुर्रत और बढ़ती है।
अगर बिकने पे आ जाओ, तो घट जाते हैं दाम अक्सर।
ना बिकने का इरादा हो तो, कीमत और बढ़ती है।

Lecture - 9 Chapter 5 Continuity and Differentiability

In this lecture, I am discussing about parametric functions and questions from NCERT Exercise 5.6 which are based on differentiation of parametric functions.

Questions discussed in this lecture:

Advertisements
NCERT EXERCISE 5.6 (Parametric Functions)

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find \frac{dy}{dx} .

Question 1. x = 2at^2, y = at^4

Question 2. x = a \cos \theta, y = b \cos \theta

Question 3. x = \sin t, y = \cos 2t

Question 4.   x = 4t, y = \frac{4}{t}

Question 5. x = \cos \theta – \cos 2\theta, y = \sin \theta – \sin 2\theta

Question 6. x = a( \theta – \sin \theta), y = a (1 + \cos \theta)

Question 7. x = \frac{\sin^3{t}}{\sqrt{\cos 2t}},  y = \frac{\cos^3{t}}{\sqrt{\cos 2t}}

Question 8. x = a \left( \cos t + log \tan \frac{t}{2} \right ), y = a \sin t

Question 9. x = a \sec \theta, y = b \tan \theta

Question 10. x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta – \theta \cos \theta)

Question 11. If x = \sqrt{a^{\sin^{-1}t}},  y = \sqrt{a^{\cos^{-1}t}}, show that \frac{dy}{dx} = -\frac{y}{x} .

Advertisements