Ashish Kumar - let's learn, implement then understand Maths and Physics
Advertisements

भीड़ हमेशा उस रास्ते पर चलती है जो रास्ता आसान लगता है,
लेकिन इसका मतलब यह नहीं की भीड़ हमेशा सही रास्ते पर चलती है|
अपने रास्ते खुद चुनिए क्योंकि आपको आपसे बेहतर और कोई नहीं जानता|

Logics for this lecture:

Question must be in addition/subtraction form.

Try to convert division/multiplication between functions to addition/subtraction by simplification.

Advertisements

If there are functions other than algebraic functions like trigonometry and logarithmic function, then you can use their respective identities to simplify them.

Logics for this lecture:

Question must be in addition/subtraction form.

Try to convert division/multiplication between functions to addition/subtraction by simplification.

Advertisements

If there are functions other than algebraic functions like trigonometry and logarithmic function, then you can use their respective identities to simplify them.

Questions Discussed in this lecture:
1. \(\int x^{2} \left(1-\frac{1}{x^{2} } \right), dx =\frac{x^{3} }{3} -x+C\)

Advertisements

2. \(\int _{}^{}\left(\sqrt{x} -\frac{1}{\sqrt{x} } \right) ^{2} dx=\frac{x^{2} }{2} +\log |x|-2x+C\)

3. \(\int \left(8^{x} +x^{8} +\frac{8}{x} +\frac{x}{8} \right), dx =\frac{8^{x} }{\log 8} +\frac{x^{9} }{9} +8\log |x|+\frac{x^{2} }{16} +C\)

Advertisements

4. \(\int (e^{a\log x} +e^{x\log a} ), dx =\frac{x^{a+1} }{a+1} +\frac{a^{x} }{\log a} +C\)

5. \(\int \left(\frac{\cos 2x+2\sin ^{2} x}{\cos ^{2} x} \right) , dx=\tan x+C\)

Advertisements

6. \(\int (x^{c} +c^{x} ), dx =\frac{x^{c+1} }{c+1} +\frac{c^{x} }{\log c} +C\)

7. \(\int _{}^{}\frac{x^{2} +3x+4}{\sqrt{x} } , dx=\frac{2}{5} x^{\frac{5}{2} } +2x^{\frac{3}{2} } +8\sqrt{x} +C\)

Advertisements

8. \(\int \left(\frac{2a}{\sqrt{x} } -\frac{b}{x^{2} } +3c, , \sqrt[{3}]{x^{2} } \right) , dx=4a\sqrt{x} +\frac{b}{x} +\frac{9cx^{\frac{5}{3} } }{5} +C\)

9. \(\int _{}^{}\frac{x^{3} -x^{2} +x-1}{x-1} , , dx =\frac{x^{3} }{3} +x+C\)

Advertisements

10. \(\int _{}^{}\frac{sec ^{2} x}{{\rm \cosec}^{2} x} , dx=\tan x-x+C\)

11. \(\int \sqrt{1+\sin 2x} , dx=-\cos x+\sin x+C\)

Advertisements

This Post Has 4 Comments

    1. As mentioned in the perks of membership, you can access the notes and assignments typed on the website, along with their video explanations.

Leave a Reply

Close Menu

New Report

Close