ashish kumar

Ch02. Inverse Trigonometric Functions

ο‘Ό

Sample Course Video

Achievements

The following badges can be earned while learning.

Certificate

Certificate on successful completion of this course.

In this online course, you will learn definition, range, domain, principal value branch, graphs of inverse trigonometric functions and elementary properties of inverse trigonometric functions. For further understanding of concepts and for examination preparation, practice questions based on the above topics are discussed in the form of assignments that have questions from NCERT Textbook exercise, NCERT Examples, Board’s Question Bank, RD Sharma, NCERT Exemplar etc. instead of only one book. The PDF of assignments can be downloaded within the course.

Course Content

Expand All
Topic Content
0% Complete 0/1 Steps
Topic Content
0% Complete 0/1 Steps

The following list of questions are just meant for reference before purchasing membership. The list might or might not include NCERT Questions as it depends on the chapter/course. Some chapters have NCERT questions combined in the Assignments and some chapters have separate NCERT questions and Assignments. For complete details, please check the index of the course in the "About Course".

Assignment – 1

Evaluate each of the following:

  1. {\displaystyle {{\sin }^{-1}}\left( -\frac{\sqrt{3}}{2} \right)}
  2. {\displaystyle {{\cot }^{-1}}\left( \frac{-1}{\sqrt{3}} \right)}
  3. {\displaystyle {{\tan }^{-1}}\left( -\frac{1}{\sqrt{3}} \right)}
  4. {\displaystyle {{\tan }^{-1}}(1)+{{\cos }^{-1}}\left( -\frac{1}{2} \right)+{{\sin }^{-1}}\left( -\frac{1}{2} \right)}
  5. {\displaystyle {{\cos }^{-1}}\left( \frac{1}{2} \right)+2{{\sin }^{-1}}\left( \frac{1}{2} \right)}
  6. {\displaystyle {{\tan }^{-1}}\sqrt{3}-{{\sec }^{-1}}(-2)}
  7. {\displaystyle {{\sin }^{-1}}\left( \sin \frac{4\pi }{5} \right)}
  8. {\displaystyle {{\sin }^{-1}}\left( \sin \frac{2\pi }{3} \right)}
  9. {\displaystyle {{\tan }^{-1}}\left( \tan \frac{3\pi }{4} \right)}
  10. {\displaystyle {{\cos }^{-1}}\left( \cos \frac{7\pi }{6} \right)}
  11. {\displaystyle \sin \left( \frac{\pi }{3}-{{\sin }^{-1}}\left( -\frac{1}{2} \right) \right)}
  12. {\displaystyle {{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}(-\sqrt{3})}
  13. {\displaystyle {{\csc }^{-1}}(-2)}
  14. {\displaystyle {{\sin }^{-1}}\left( \sin \frac{3\pi }{5} \right)}
  15. {\displaystyle \tan \left[ \frac{1}{2}{{\cos }^{-1}}\left( \frac{2}{\sqrt{5}} \right) \right]}
  16. {\displaystyle {{\cos }^{-1}}\left( \cos \frac{13\pi }{6} \right)}
  17. {\displaystyle {{\tan }^{-1}}\left( \tan \frac{7\pi }{6} \right)}
  18. {\displaystyle {{\cos }^{-1}}[\cos (-680{}^\circ )]}
  19. {\displaystyle \tan \left\{ 2{{\tan }^{-1}}\frac{1}{5}-\frac{\pi }{4} \right\}}
  20. {\displaystyle {{\tan }^{-1}}\left( \tan \frac{5\pi }{6} \right)}
  21. {\displaystyle {{\sin }^{-1}}\left( \cos \left( \frac{43\pi }{5} \right) \right)}
  22. {\displaystyle {{\sin }^{-1}}\left( -\frac{\sqrt{3}}{2} \right)+{{\cos }^{-1}}\left( -\frac{1}{2} \right)+{{\tan }^{-1}}\left( -\frac{1}{\sqrt{3}} \right)}
  23. {\displaystyle {{\tan }^{2}}({{\sec }^{-1}}2)+{{\cot }^{2}}(\text{cose}{{\text{c}}^{-1}}3)}
  24. {\displaystyle \sin \left( 2{{\tan }^{-1}}\frac{1}{3} \right)+\cos ({{\tan }^{-1}}2\sqrt{2})}
  25. {\displaystyle {{\sec }^{2}}({{\tan }^{-1}}2)+\text{cose}{{\text{c}}^{2}}({{\cot }^{-1}}3)}
  26. {\displaystyle \sin ({{\tan }^{-1}}x+{{\cot }^{-1}}x)}
  27. {\displaystyle \sin \left( {{\cos }^{-1}}\frac{4}{5} \right)}
  28. {\displaystyle \sin \left( {{\cot }^{-1}}\frac{4}{3} \right)}
  29. {\displaystyle \sin ({{\cot }^{-1}}x)}
  30. {\displaystyle \cos ({{\tan }^{-1}}x)}
  31. {\displaystyle {{\sin }^{-1}}\frac{1}{2}-2{{\sin }^{-1}}\frac{1}{\sqrt{2}}}
  32. {\displaystyle \tan \left( {{\cos }^{-1}}\frac{4}{5}+{{\tan }^{-1}}\frac{2}{3} \right)}
  33. {\displaystyle \tan \left( 2{{\tan }^{-1}}\frac{1}{5} \right)}
  34. {\displaystyle \tan \left[ 2\cos \left( 2{{\sin }^{-1}}\frac{1}{2} \right) \right]}
  35. {\displaystyle \cot ({{\tan }^{-1}}a+{{\cot }^{-1}}a)}
  36. {\displaystyle \tan \frac{1}{2}\left[ {{\sin }^{-1}}\frac{2x}{1+{{x}^{2}}}+{{\cos }^{-1}}\frac{1-{{y}^{2}}}{1+{{y}^{2}}} \right],\, |x|<1,\,y>0\,\text{and}\,xy<1}
  37. {\displaystyle \sin ({{\tan }^{-1}}x),\,\,|x|<1}
  38. {\displaystyle {{\tan }^{-1}}\left( \frac{x}{y} \right)-{{\tan }^{-1}}\left( \frac{x-y}{x+y} \right)}

Assignment – 2

Simplify:

  1. {\displaystyle {{\tan }^{-1}}\left( \sqrt{\frac{1-\cos x}{1+\cos x}} \right),\,\,x<\pi }
  2. {\displaystyle {{\tan }^{-1}}\left( \frac{\cos x-\sin x}{\cos x+\sin x} \right),\,x<\pi }
  3. {\displaystyle {{\cot }^{-1}}\left( \frac{1}{\sqrt{{{x}^{2}}-1}} \right),\,\,|x|\,>1}
  4. {\displaystyle {{\tan }^{-1}}\frac{1}{\sqrt{{{x}^{2}}-1}},\,|x|\,>1}
  5. {\displaystyle {{\tan }^{-1}}\left( \frac{\sqrt{1+{{x}^{2}}}-1}{x} \right),\,\,x\ne 0}
  6. {\displaystyle {{\tan }^{-1}}\frac{x}{\sqrt{{{a}^{2}}-{{x}^{2}}}},\,\,|x|<a}
  7. {\displaystyle {{\tan }^{-1}}\left( \frac{3{{a}^{2}}x-{{x}^{3}}}{{{a}^{3}}-3a{{x}^{2}}} \right),\,a>0;\,\frac{-a}{\sqrt{3}}\le x\le \frac{a}{\sqrt{3}}}
  8. {\displaystyle {{\tan }^{-1}}\left( \frac{\cos x}{1+\sin x} \right)}
  9. {\displaystyle {{\tan }^{-1}}\left( \frac{\sin x}{1+\cos x} \right)}
  10. {\displaystyle {{\tan }^{-1}}\left( \frac{a\cos x-b\sin x}{b\cos x+a\sin x} \right)}
  11. {\displaystyle {{\tan }^{-1}}\left( \frac{x}{a+\sqrt{{{a}^{2}}-{{x}^{2}}}} \right)}
  12. {\displaystyle {{\sin }^{-1}}\left( \frac{5}{13}\cos x+\frac{12}{13}\sin x \right)}
  13. {\displaystyle {{\sin }^{-1}}(x\sqrt{1-x}-\sqrt{x}\sqrt{1-{{x}^{2}}})}
  14. {\displaystyle {{\sin }^{-1}}\left\{ \frac{\sqrt{1+x}+\sqrt{1-x}}{2} \right\}}
  15. {\displaystyle {{\tan }^{-1}}\sqrt{\frac{a-x}{a+x}}}
  16. {\displaystyle {{\tan }^{-1}}\left( \frac{\cos x}{1-\sin x} \right),\,\,-\frac{\pi }{2}<x<\frac{\pi }{2}}
  17. {\displaystyle {{\sin }^{-1}}\left\{ \frac{x+\sqrt{1-{{x}^{2}}}}{\sqrt{2}} \right\}}
  18. {\displaystyle {{\tan }^{-1}}(x+\sqrt{1+{{x}^{2}}})}
  19. {\displaystyle \sin \left\{ 2{{\tan }^{-1}}\sqrt{\frac{1-x}{1+x}} \right\}}
  20. {\displaystyle {{\sin }^{-1}}\left( \frac{\sin x+\cos x}{\sqrt{2}} \right)}
  21. {\displaystyle {{\tan }^{-1}}\left[ \frac{a\cos x-b\sin x}{b\cos x+a\sin x} \right],\,\text{if}\,\,\frac{a}{b}\tan x>-1}
  22. {\displaystyle {{\cot }^{-1}}\left( \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\frac{x}{2},\,\,x\in \left( 0,\,\,\frac{\pi }{4} \right)}
  23. {\displaystyle {{\tan }^{-1}}\left( \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right)=\frac{\pi }{4}-\frac{1}{2}{{\cos }^{-1}}x,\,\,-\frac{1}{\sqrt{2}}\le x\le 1}

Assignment – 3

Prove:

  1. {\displaystyle 3{{\sin }^{-1}}x={{\sin }^{-1}}(3x-4{{x}^{3}}),\,\,x\in \left[ -\frac{1}{2},\frac{1}{2} \right]}
  2. {\displaystyle 3{{\cos }^{-1}}x={{\cos }^{-1}}(4{{x}^{3}}-3x),\,\,x\in \left[ \frac{1}{2},\,\,1 \right]}
  3. {\displaystyle {{\tan }^{-1}}\frac{2}{11}+{{\tan }^{-1}}\frac{7}{24}={{\tan }^{-1}}\frac{1}{2}}
  4. {\displaystyle 2{{\tan }^{-1}}\frac{1}{2}+{{\tan }^{-1}}\frac{1}{7}={{\tan }^{-1}}\frac{31}{17}}
  5. {\displaystyle {{\tan }^{-1}}\frac{3}{4}+{{\tan }^{-1}}\frac{3}{5}-{{\tan }^{-1}}\frac{8}{19}=\frac{\pi }{4}}
  6. {\displaystyle {{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3}
  7. {\displaystyle {{\tan }^{-1}}x+{{\tan }^{-1}}\left( \frac{2x}{1-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \frac{3x-{{x}^{3}}}{1-3{{x}^{2}}} \right)}
  8. {\displaystyle {{\sin }^{-1}}(2x\sqrt{1-{{x}^{2}}})=2{{\sin }^{-1}}x=2{{\cos }^{-1}}x}
  9. {\displaystyle {{\tan }^{-1}}\left( \frac{\sqrt{1+{{x}^{2}}}+\sqrt{1-{{x}^{2}}}}{\sqrt{1+{{x}^{2}}}-\sqrt{1-{{x}^{2}}}} \right)=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}-\frac{1}{2}{{\sin }^{-1}}{{x}^{2}}}
  10. {\displaystyle {{\tan }^{-1}}\sqrt{x}=\frac{1}{2}{{\cos }^{-1}}\left( \frac{1-x}{1+x} \right),\,\,x\in [0,\,1]}
  11. {\displaystyle \frac{9\pi }{8}-\frac{9}{4}{{\sin }^{-1}}\frac{1}{3}=\frac{9}{4}{{\sin }^{-1}}\frac{2\sqrt{2}}{3}}
  12. {\displaystyle \tan \left( \frac{\pi }{4}+\frac{1}{2}{{\cos }^{-1}}\frac{a}{b} \right)+\tan \left( \frac{\pi }{4}-\frac{1}{2}{{\cos }^{-1}}\frac{a}{b} \right)=\frac{2b}{a}}
  13. {\displaystyle \sin [{{\cot }^{-1}}\{\cos ({{\tan }^{-1}}x)\}]=\frac{\sqrt{{{x}^{2}}+1}}{\sqrt{{{x}^{2}}+2}}}
  14. {\displaystyle {{\tan }^{-1}}\left( \frac{x}{\sqrt{{{a}^{2}}-{{x}^{2}}}} \right)={{\sin }^{-1}}\frac{x}{a}={{\cot }^{-1}}\left( \frac{\sqrt{{{a}^{2}}-{{x}^{2}}}}{a} \right)}
  15. {\displaystyle {{\tan }^{-1}}\left( \frac{m}{n} \right)-{{\tan }^{-1}}\left( \frac{m-n}{m+n} \right)=\frac{\pi }{4}}
  16. {\displaystyle {{\tan }^{-1}}\frac{1}{5}+{{\tan }^{-1}}\frac{1}{7}+{{\tan }^{-1}}\frac{1}{3}+{{\tan }^{-1}}\frac{1}{8}=\frac{\pi }{4}}
  17. {\displaystyle 4{{\tan }^{-1}}\frac{1}{5}-{{\tan }^{-1}}\frac{1}{70}+{{\tan }^{-1}}\frac{1}{99}=\frac{\pi }{4}}
  18. {\displaystyle {{\tan }^{-1}}\left( \frac{\cos x}{1-\sin x} \right)-{{\cot }^{-1}}\left( \sqrt{\frac{1+\cos x}{1-\cos x}} \right)=\frac{\pi }{4}}
  19. {\displaystyle {{\sin }^{-1}}\frac{3}{5}-{{\sin }^{-1}}\frac{8}{17}={{\cos }^{-1}}\frac{84}{85}}
  20. {\displaystyle {{\sin }^{-1}}\frac{8}{17}+{{\sin }^{-1}}\frac{3}{5}={{\tan }^{-1}}\frac{77}{36}}
  21. {\displaystyle {{\tan }^{-1}}\frac{63}{16}={{\sin }^{-1}}\frac{5}{13}+{{\cos }^{-1}}\frac{3}{5}}
  22. {\displaystyle {{\cos }^{-1}}\frac{4}{5}+{{\cos }^{-1}}\frac{12}{13}={{\cos }^{-1}}\frac{33}{65}}
  23. {\displaystyle {{\cos }^{-1}}\frac{12}{13}+{{\sin }^{-1}}\frac{3}{5}={{\sin }^{-1}}\frac{56}{65}}
  24. {\displaystyle {{\sin }^{-1}}\frac{12}{13}+{{\cos }^{-1}}\frac{4}{5}+{{\tan }^{-1}}\frac{63}{16}=\pi }
  25. {\displaystyle 2{{\tan }^{-1}}\left\{ \tan \frac{\alpha }{2}\tan \left( \frac{\pi }{4}-\frac{\beta }{2} \right) \right\}={{\tan }^{-1}}\frac{\sin \alpha \cos \beta }{\cos \alpha +\sin \beta }}
  26. {\displaystyle 2{{\tan }^{-1}}\left( \sqrt{\frac{a-b}{a+b}}\tan \frac{\theta }{2} \right)={{\cos }^{-1}}\left( \frac{a\cos \theta +b}{a+b\cos \theta } \right)}
  27. If {\displaystyle \sin \left( {{\sin }^{-1}}\frac{1}{5}+{{\cos }^{-1}}x \right)=1} , then find the value of x.
  28. If {\displaystyle y={{\cot }^{-1}}(\sqrt{\cos x})-{{\tan }^{-1}}(\sqrt{\cos x})} , prove that {\displaystyle \sin y={{\tan }^{2}}\frac{x}{2}} .

Assignment – 4

Solve:

  1. {\displaystyle {{\tan }^{-1}}\frac{x-1}{x-2}+{{\tan }^{-1}}\frac{x+1}{x+2}=\frac{\pi }{4}}
  2. {\displaystyle {{\tan }^{-1}}2x+{{\tan }^{-1}}3x=\frac{\pi }{4}}
  3. {\displaystyle {{\tan }^{-1}}(x+1)+{{\tan }^{-1}}(x-1)={{\tan }^{-1}}\frac{8}{31}}
  4. {\displaystyle 2{{\tan }^{-1}}(\cos x)={{\tan }^{-1}}(2\,\text{cosec}\,x)}
  5. {\displaystyle {{\tan }^{-1}}\frac{1-x}{1+x}=\frac{1}{2}{{\tan }^{-1}}x,\,(x>0)}
  6. {\displaystyle {{\sin }^{-1}}(1-x)-2{{\sin }^{-1}}x=\frac{\pi }{2}}
  7. {\displaystyle {{\sin }^{-1}}x+{{\sin }^{-1}}(1-x)={{\cos }^{-1}}x}
  8. {\displaystyle {{\sin }^{-1}}6x+{{\sin }^{-1}}6\sqrt{3}x=-\frac{\pi }{2}}
  9. Solve: {\displaystyle {{\tan }^{-1}}(x-1)+{{\tan }^{-1}}x+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}3x}
  10. Solve: {\displaystyle 3{{\sin }^{-1}}\frac{2x}{1+{{x}^{2}}}-4{{\cos }^{-1}}\frac{1-{{x}^{2}}}{1+{{x}^{2}}}+2{{\tan }^{-1}}\frac{2x}{1-{{x}^{2}}}=\frac{\pi }{3}}
  11. If {\displaystyle {{\sin }^{-1}}\frac{2a}{1+{{a}^{2}}}-{{\cos }^{-1}}\frac{1-{{b}^{2}}}{1+{{b}^{2}}}={{\tan }^{-1}}\frac{2x}{1-{{x}^{2}}}} , then prove that {\displaystyle x=\frac{a-b}{1+ab}} .
  12. Evaluate: {\displaystyle {{\tan }^{-1}}\left( \frac{a+bx}{b-ax} \right),\,\,x<\frac{b}{a}}
  13. Prove: {\displaystyle {{\tan }^{-1}}\left( \frac{a-b}{1+ab} \right)+{{\tan }^{-1}}\left( \frac{b-c}{1+bc} \right)+{{\tan }^{-1}}\left( \frac{c-a}{1+ca} \right)=0}
  14. If {\displaystyle {{\tan }^{-1}}x+{{\tan }^{-1}}y=\frac{4\pi }{5}} , then find the value of {\displaystyle {{\cot }^{-1}}x+{{\cot }^{-1}}y} ?
  15. If {\displaystyle {{\tan }^{-1}}\left( \frac{1}{1+1.2} \right)+{{\tan }^{-1}}\left( \frac{1}{1+2.3} \right)+...+{{\tan }^{-1}}\left( \frac{1}{1+n.(n+1)} \right)={{\tan }^{-1}}\phi } , then find the value of {\displaystyle \phi } .
  16. If {\displaystyle {{({{\tan }^{-1}}x)}^{2}}+{{({{\cot }^{-1}}x)}^{2}}=\frac{5{{\pi }^{2}}}{8}} , then find {\displaystyle x} .
Syllabus medium

English

Explanation Language

Hinglish (Hindi + English)

Class

12

Course Mode

Online learning

Learning mode

Self-learning from videos

Subject

Mathematics